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Kinetic theory of plasma instabilities

Kinetic theory of plasma instabilities

o Particles and fields of a plasma can be described by the
coupled Vlasov-Maxwell system of equations
= In general: Difficult!

@ Describe plasma instablities by the linearized Vlasov equation
for particle distribution function (PDFs) in one-particle phase
space f,(X, p, t) for species a

e Fourier-Laplace transform to frequency space (k real = w
generally complex) to yield late term behavior of small
amplitude fluctuations:
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Kinetic theory of plasma instabilities

Possible modes are given by solutions of the dispersion
relation: A(k,w) =detA;j =0

2,2 [ kiki
Maxwell operator Ajj = < k ( o — 5,’j) + j
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Dielectric tensor 1 = 0;; + *"toy;

Conductivity tensor oj; generally very complex function of the
PDF and the phase speed z



The Weibel instability

The Weibel instability

o Transverse, weakly propagating plasma instability in
collisionless, (temperature) anisotropic plasmas

@ Dispersion relation known and evaluated in nonrelativistic limit
in the limit of zero magnetic field by Schlickeiser et al. (2010)

o Now: covariant treatment to derive existence conditions for
relativistic plasma particles

@ Important for

e Shockwaves in space
o Gamma ray bursts
o Particle beams through plasmas



The Weibel instability

The particle distribution function

Use temperature anisotropic bi-Maxwellian PDF

@ Variables introduced by Lerche, 1967: y = n%‘c,
pA+p3
E=y/1+ Lgc;
i ' Ty _ Y
@ Temperature anisotropy A, defined as A := =
€



The Weibel instability

Dispersion relation

@ Dispersion relation from determinant of Maxwell operator
det /\,‘j =0
@ Form of the Maxwell operator from the dielectric tensor

Yij = 0 + X
@ For transverse fluctuations it is given by
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@ Investigate this dispersion relation for bi-Maxwellian PDF
given above



The Weibel instability

The following equation has to be investigated

Dispersion relation

Introduce the phase speed z = - = mw + zjm“’ R +1S
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First results

First results

After straightforeward but messy calculus we are left with

Real and Imaginary part of the dispersion relation

Reminder: Phase speed z = R +1S, set R =0..
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First results

Result for ReD

First existence condition here:
Integral in ReD(R = 0, S) converges only for A > 0.5.

The integral in ReD(R = 0, S) can be done analytically:
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Future work

Work in progress and future ideas

@ What about the imaginary part? = Numerical analysis.
@ Use relativistically correct generalisation of bi-Maxwell PDF
@ Do the same for bi-kappa PDF

@ Similar investigations for other instabilities, e.g. mirror,
firehose modes
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